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Abstract

A key problem in salient object detection is how to ef-
fectively exploit the multi-level saliency cues in a unified
and data-driven manner. In this paper, building upon the
recent success of deep neural networks, we propose a fully
convolutional neural network based approach empowered
with multi-level fusion to salient object detection. By inte-
grating saliency cues at different levels through fully con-
volutional neural networks and multi-level fusion, our ap-
proach could effectively exploit both learned semantic cues
and higher-order region statistics for edge-accurate salient
object detection. First, we fine-tune a fully convolutional
neural network for semantic segmentation to adapt it to
salient object detection to learn a suitable yet coarse per-
pixel saliency prediction map. This map is often smeared
across salient object boundaries since the local receptive
fields in the convolutional network apply naturally on both
sides of such boundaries. Second, to enhance the resolu-
tion of the learned saliency prediction and to incorporate
higher-order cues that are omitted by the neural network,
we propose a multi-level fusion approach where super-pixel
level coherency in saliency is exploited. Our extensive ex-
perimental results on various benchmark datasets demon-
strate that the proposed method outperforms the state-of-
the-art approaches.

1. Introduction
Salient object detection (saliency prediction) [9][23][14]

[6] aims at identifying the visually interesting object re-
gions that are consistent with human perception. It is essen-
tial in many computer vision tasks including object-aware
image retargeting [49], image cropping [38], context-aware
image editing [54], recognition [40], and interactive image
segmentation [31]. Even though considerable progress has
been made (See [7] for a dedicated survey on salient ob-
ject detection before the era of deep learning), it still exists
as a challenging task and requires competent approaches to
effectively handle real world scenarios.

Most of the traditional saliency detection methods are

based on low-level hand-crafted features such as color and
texture descriptors [24], or they compute variants of appear-
ance uniqueness [25] and region compactness [14] based
on the above primitives. Statistical priors of salient ob-
jects, e.g. contrast, boundary, and in-focus have also been
investigated. These methods report acceptable results on
certain datasets. However, saliency methods based on such
simple hand-crafted features are often incapable of captur-
ing semantic attributes of salient objects. As a result, their
saliency maps deteriorate when the images become clut-
tered and complicated. By contrast, high-level semantic in-
formation plays a central role in distinguishing foreground
objects from their background scenes with similar appear-
ances. It is frequently associated with object localization,
recognition, and segmentation. Numerous methods have
exploited high-level information for salient object detec-
tion. To this end, deep neural network based salient ob-
ject detection has achieved remarkable success and various
network structures (convolutional [33] [29] [55] [11] [46],
recurrent [47] [27]) have been proposed to learn competent
feature representations for salient objects.

We argue that high-level semantic information could be
a two-edged sword for salient object detection. On the
one hand, semantic attributes provide rich and essential in-
formation in distinguishing foreground objects from diffi-
cult backgrounds [37]. On the other hand, there exist sce-
narios where the correlation between semantic information
and saliency is low or even negative. As illustrated in
Fig. 1, semantic segmentation focuses only on whether or
not there exist trained categories of objects without con-
sidering whether these objects are salient. In this paper,
we fine-tuned a deep learning network originally designed
for semantic segmentation. By using the trained seman-
tic segmentation model to initialize our saliency detection
network, semantic information is reserved to better detect
salient semantic objects.

An end-to-end neural network based saliency prediction
framework has the potential to generate pixel-level saliency
in a data-driven manner, but nevertheless, there exist sev-
eral problems. First, the derived saliency scores from a
fully convolutional neural network have low spatial reso-



Figure 1. Difference between semantic segmentation and saliency
detection. From left to right: original image, ground truth saliency
map, saliency detection result and semantic segmentation result.

lution due to the pooling and stride operators. Even though
the dilation or atrous convolution (see [10] [42]) could be
used, significant downsampling effects may still exist in the
resultant saliency maps. Second, the convolutional network
can encode the local structure, yet local features may fail to
capture the wider range context that is critical for salient ob-
ject detection. Third, existing deep learning based methods
disregard the prior knowledge (e.g. contrast prior, boundary
prior and center prior) for salient object detection since they
do not have a mechanism to impose such constraints.

To address the above issues, we propose to exploit the
multi-level saliency cues in a unified framework. First, we
use a deep fully convolutional network to learn a coarse
level dense saliency map by exploiting the high-level se-
mantic information for saliency prediction. Our network is
built upon the DeepLab semantic segmentation [10]. We re-
purpose a very deep convolutional neural network (ResNet-
101 [18]) that is originally trained for image classification,
to the task of saliency prediction. We transform all fully
connected layers to convolutional layers, and increase fea-
ture resolution through atrous convolutional layers [10]. In
this way, we increase the resolution of the output feature
four times. Similar to [10], the resultant saliency predic-
tion map is upsampled by a factor of 8× to get the origi-
nal image resolution. This is done by bilinear interpolation
(in essence, this upsampling operation could be achieved by
deconvolution [53]). In addition, to handle the low spatial
resolution of the learned saliency map and to integrate the
higher-order statistics for salient object detection, we pro-
pose a multi-level fusion approach, where superpixel level
coherency in saliency map is exploited to incorporate super-
pixel level statistics.

The main contributions of our work are summarized as
follows: 1) We introduce a fully convolutional neural net-
work based approach for salient object detection. By in-
tegrating saliency cues at different levels through our net-
work, we effectively exploit both learned cues and higher-
order region statistics for edge-accurate pixel-level detec-

tion; 2) We propose a multi-level fusion method where we
employ superpixel level coherency in saliency to enhance
the resolution of saliency prediction; 3) We use a small
training dataset (6,000 images from the MSRA10K dataset
[13]), yet achieve the state-of-the-art performance on all
other datasets, which proves that our method elegantly gen-
eralizes to other datasets; 4) Our method is computationally
efficient, which takes 0.2 sec to generate saliency map of a
given image.

2. Related Work
Existing salient object detection methods can be roughly

classified into two categories: hand-crafted feature based
methods, and deep learning based methods. We refer in-
terested readers to [7] and [8] for an in-depth survey and
benchmark comparisons of conventional methods.

2.1. Hand-crafted Feature Based Methods

Many existing salient object detection methods [1] [39]
[14] [43] [15] rely on hand-crafted features. They use color
contrast [15] given an over-segmented image. [50] formu-
lates saliency detection as an energy minimization prob-
lem and solves saliency assignment for each pixel. In [36]
salient object detection is formulated as an image segmen-
tation problem. By exploiting the sparsity prior for salient
object, [44] solves salient object detection as a low-rank ma-
trix decomposition problem. Objectness, which highlights
the object-like regions, has also been used in [3] [25] [9].

In addition to the above low-level cues, [56] presents a
robust background measure, namely “boundary connectiv-
ity”, and a principle optimization framework. Along with
this line, [51] ranks the similarity of image elements with
foreground and background cues via graph-based manifold
ranking. [17] uses the center of a convex hull notion to
obtain strong background and foreground priors. Differ-
ent from the above unsupervised methods, which compute
pixel or superpixel saliency directly, [24] [26] and [48] re-
gard saliency detection as a regression problem.

2.2. Deep Learning Based Methods

The above hand-crafted feature based saliency detection
methods are effective for simple scenes, and they become
very fragile when the scene complexity increases. Re-
cently, deep neural network models have been adopted to
salient object detection [33] [55] [11] [46] [29] [47] [27]
[28] [30] [19]. Deep networks have been shown to encode
high-level semantic features that capture saliency informa-
tion better than hand-crafted features and reported superior
performance compared with the traditional techniques.

Deep learning based methods generally train a neural
network to assign saliency to each pixel or superpixel. [29]
learns saliency of each superpixel by using learned fea-
tures obtained from an existing CNN model instead of those



Figure 2. A nutshell of our approach to saliency detection. Given an image as input, the deep network outputs a coarse dense saliency map.
Then three scale image over-segmentation are utilized to refine the low resolution saliency map and incorporate the higher-order region
statistics for edge-accurate salient object detection. Finally, the three saliency maps are fused to form our final saliency map.

handcraft features. [20] aims at narrowing the semantic
gap. [33] proposes a multi-task learning framework to
saliency detection, where saliency detection and semantic
segmentation are learned at the same time. As a recon-
struction based model, [30] uses an end-to-end contrast net-
work to produce a pixel-level saliency map. In [11], a novel
Deep Image Saliency Computing (DISC) framework is pre-
sented for fine-grained image saliency computing. Two
stacked DCNNs are used to get coarse-level saliency map
and fine-grained saliency map respectively. [21] formulates
saliency map as a generalized Bernoulli distribution. By
training a deep architecture to predict saliency maps, it com-
putes distances between probability distributions of output
saliency map and the ground truth. Another noteworthy
work [27] proposes a recurrent attentional convolutional-
deconvolution network (RACDNN), which iteratively se-
lects image sub-regions to perform saliency refinement. In
[28] both CNN features and low-level features are inte-
grated for saliency detection. More recently, [35] proposes
an end-to-end deep hierarchical saliency network (DHSNet)
based on convolutional neural networks for detecting salient
objects. This work is similar to [41] where a shallow and
a deep convolutional network are trained in an end-to-end
architecture. By jointly modeling global and local con-
text, [55] proposes a multi-context deep convolutional neu-
ral network for saliency detection.

As opposed to those fully convolutional neural network
(FCNN) based methods [33] [35] [55], our network is much
deeper. We use multiple, parallel, and dilated convolution
layers that provide a wider receptive field, which improves
robustness and incorporates stronger contextual informa-
tion. We generate spatially consistent and boundary accu-
rate saliency maps using histogram-based saliency affinity
as well as multi-scale fusion based spatial refinement. Fi-
nally, We use a smaller training set than other methods yet
achieve better results.

3. Our Approach
3.1. Overview

Targeting at effectively exploiting the multi-level
saliency cues in a unified and data-driven manner, in this
paper, we propose a new FCNN based approach empowered
with multi-level fusion to salient object detection. By inte-
grating saliency cues at different levels through FCNNs and
multi-level fusion, our approach could effectively exploit
both learned semantic cues and higher-order region statis-
tics for edge-accurate salient object detection.

First, we fine-tune a FCNN (Deep Residual Network
[18] based) for semantic segmentation to adapt it to salient
object detection to learn a coarse per-pixel saliency predic-
tion map. Due to the local receptive fields in the convo-
lutional network, the resultant map is often smeared across
salient object boundaries. Second, to enhance the resolution
of the learned saliency prediction map and to incorporate
higher-order cues that are omitted by the neural network,
we propose a multi-level fusion approach where super-pixel
level coherency in saliency is exploited. This spatial refine-
ment for saliency detection looks wide and assigns similar
saliency value to similar neighboring regions. To deal with
the multi-scale effect with salient object, we conduct the
spatial refinement at different levels before the multi-level
refined saliency prediction maps are fused to output the final
salient object detection results. A nutshell of our approach
is illustrated in Fig. 2.

3.2. Saliency Prediction by Convolutional Networks

Our salient object detection network is built upon the
DeepLab semantic segmentation network [10], where a
deep convolutional neural network (ResNet-101 [18] in this
work) trained for the task of image classification is re-
purposed to the task of semantic segmentation by 1) trans-
forming all the fully connected layers to convolutional lay-
ers and 2) increasing feature resolution through atrous or
dilation convolutional layers [10] [52]. In this way, the



spatial resolution of the output feature has been increased
four times, which is much denser than [55] [29]. Similar
to [10], the resultant saliency prediction map is upsampled
by a factor of 8 to reach the same resolution as the input
image by employing bi-linear interpolation. Note that, this
upsampling operation could also be achieved by deconvo-
lution [53]). Here we adopt bi-linear interpolation mainly
due to its efficiency. Furthermore, as demonstrated in the
following sections, our multi-scale fusion based saliency re-
finement could handle imperfect saliency prediction results
from upsampling naturally.

Instead of learning unreferenced functions, Deep Resid-
ual Network [18] explicitly learns residual functions with
reference to the layer inputs. These residual networks are
easier to optimize, and can gain accuracy from considerably
increased depth. Therefore, we used ResNet-101 model in
our saliency map prediction network. The architecture of
our network is nearly the same as the deep residual network
by removing the final pooling and fully-connected layer to
adapt it for dense prediction (semantic segmentation and
saliency detection). To make use of the multi-scale context
for final prediction, we add multiple parallel dilated convo-
lutional layers at the end and then sum these layers to feed
into the final softmax layer (in training stage) or prediction
layer (in test stage). All these together form our fully convo-
lutional neural network (FCNN), and we define our saliency
map using fine-tuned deep residual network as SI . Experi-
mental results on 11 saliency benchmarking datasets prove
that this extremely deep network ends up with more robust
and better saliency map compared with the state-of-the-art
methods. In Figure 3, we compare our approach with state-
of-the-art methods, where (g) shows the saliency prediction
map directly from the fully convolutional networks. Even
with the deep FCNN only, our approach already outper-
forms most of the competing methods.

Training details: We trained our model using 6,000 im-
ages from the MSRA10K dataset after excluding the same
images in the ASD dataset and the 3,000 testing images. We
use Caffe[22] to train our network. The network parameters
are fine-tuned from [10]. We use momentum-accelerated
mini-batch SGD with “batch size” 5 and “iter size” 10
for accumulating the gradients in different iterations. The
learning rate is initialized as 2.5e-4 with “poly” decay pol-
icy. The max iteration is 20000. To minimize over-fitting,
we use drop-out layers in our network. We trained the
model until training accuracy kept unchanged for 200 it-
erations. Each image is firstly scaled to the same size as
224 × 224 × 3. Training takes 3 days for 20,000 iterations
on a PC with one NVIDIA Quadro M4000 GPU.

3.3. Saliency Refinement by Multi-scale Fusion

The above deep fully convolutional network learns to
predict saliency map in an end-to-end manner, which al-

ready outperforms most of the state-of-the-art methods as
witnessed by Fig. 3. However, due to the local receptive
fields in the convolutional network, the saliency prediction
map is often smeared across salient object boundaries. Ad-
ditionally, the deep neural networks have not explicitly in-
corporated existing saliency cues at low-level or mid-level.
Therefore, to enhance the resolution of the learned saliency
prediction map and to incorporate higher-order cues that are
omitted by the neural network, we propose a multi-level fu-
sion approach. Under our formulation, super-pixel level co-
herency in saliency is exploited in spatial refinement, where
saliency detection looks wide and assigns similar saliency
value to similar neighboring regions. To evaluate the simi-
larity between superpixels, color histogram distance in three
color spaces are used, which include RGB color space, Lab
color space and HSV color space. To deal with the multi-
scale effect with salient object, we conduct the spatial re-
finement at different levels before the multi-level refined
saliency prediction maps are fused to output the final salient
object detection results.

In order to get homogeneous consistent regions, we
used SLIC [2] for image over-segmentation to represent
each image as a collection of superpixels. Each image
X is represented as a collection of consistent elements
X = {X1, X2, · · · , XN}, where the numbers of super-
pixels N = {100, 200, 300} are used to achieve multi-
scale image over-segmentation. This multi-scale over-
segmentation strategy has been widely exploited in achiev-
ing higher resolution saliency prediction map [24]. Given
saliency prediction map SI from deep neural networks, for
a specific number ofN , we reach a saliency prediction score
vector SI =

{
sI1, s

I
2, ..., s

I
N

}
, where the per-superpixel

score sIi is defined as the median saliency score in super-
pixel Xi.

Similar to [29], we formulate the spatial refinement as a
multi-scale binary pixel labeling problem, and employ the
following energy function (The energy function is defined
on each scale separately):

E(SR) =
∑
i

ωi(s
R
i − sIi )2 +

∑
i,j

ωij(s
R
i − sRj )2, (1)

where SR =
{
sR1 , s

R
2 , ..., s

R
N

}
represents the desired

saliency value, sRi is the saliency score after refinement at
superpixel Xi. The first term in Eq.-(1) encourages similar-
ity between the refined saliency map and the input coarse
saliency map, while the second term is an all-pair spatial
coherence term that favors consistent saliency scores across
different superpixels if they are similar to each other. ωi is
a flag, which is 1 when sIi does not belong to strong fore-
ground or strong background region, and 0 when it is strong
foreground or strong background region. ωi is used to keep
saliency score of those strong regions intact after spatial re-
finement. In our paper, we define strong region in the fol-
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Figure 3. Salient object detection results on challenging images by different methods. From left to right: original image, ground truth
saliency map, saliency maps using MDF [29], LEGS [46], DISC [11], DRFI [24], Our saliency map from Deep Residual Network and our
final saliency map. It is worth noting the difference between the network output (g) and the final multi-cue fusion results (h).

lowing way: given saliency prediction map SI from deep
fully convolutional network, we find those regions with
saliency value 1 or 0, and label these superpixels as strong
foreground or strong background region respectively. The
weight for pairwise term ωij depends on the similarity be-
tween any pair of superpixels Xi and Xj . In this paper, we

define ωij = exp
(
−d

2
ij

δ2

)
exp

(
− e

2
ij

σ2

)
by considering both

the appearance and the spatial distance, where eij is the spa-
tial distance between the superpixels and dij is the color
histogram distance or texture histogram distance, which is
defined as Chi-square distance: dij =

∑b
k=1

[
(hik−hjk)

2

hik+hjk

]
,

where b is the number of color histogram bins in each color
space, and we use b = 512 in this paper. hik is the his-
togram value of superpixel Xi in the k-th bin.

To efficiently optimize the above energy minimization
problem (1), instead of solving it via global optimization,
we adopt the following way. First, with the similarity matrix
Ω = [ωij ] defined above, we choose a threshold th based on
statistics to determine the similar superpixel pairs by verify-
ing the similarity. If a pair of superpixels Xi and Xj satisfy
the similarity constraint ωij ≥ th, then Xi and Xj are de-
termined as similar superpixels for following merge. Sec-

ond, we merge similar superpixels Xi and Xj , and assign
median value of pixels saliency scores inside both super-
pixels. The superpixels are merged in the order of simi-
larities, i.e., the most similar superpixels are merged first.
Taking the spatial neighbouring relation into consideration
and to keep sharp boundary in salient object detection, we
only merge spatially adjacent superpixels. Third, to keep
the strong foreground and strong background region intact,
we assign those strong superpixels their original saliency
scores. To exploit the multi-scale effect in salient object de-
tection, the above refinement is conducted in each scale in-
dividually. Finally, the refined saliency prediction maps are
fused to achieve the final results. We used equal weights to
combine the three scale saliency maps. These weights can
be efficiently learned by using one convolutional layer.

4. Experimental Results

4.1. Experimental Setup

Data set: We have evaluated the performance of our pro-
posed method on 11 saliency benchmark datasets. We used
3,000 images from the MSRA10K dataset [13] for testing as
the remaining 6000 have been used in training (1000 images



from the MRSA1K dataset constitute the ASD [1] dataset).
Most of the images in this dataset contain one salient object.
The ECSSD dataset [50] contains 1,000 images of seman-
tically meaningful but structurally complex images, which
makes this dataset very challenging. The DUT dataset [51]
contains 5,168 images. The SOD saliency dataset [24] con-
tains 300 images where many images have multiple salient
objects with low contrast. SED1 and SED2 [4] are both
small saliency datasets, and they all contain 100 images
only. Images in the SED1 dataset contain one single salient
object, while those in SED2 contains two salient objects.
The PASCAL-S [34] dataset is generated from the PASCAL
VOC dataset [16] and contains 850 images. HKU-IS [29]
is a recently released saliency dataset with 4,447 images.
THUR [12] has 6232 images which contains five object
classes, i.e. “butterfly”,“coffee mug”,“dog jump”,“giraffe”
and “plane”. Finally, ICOSEG [5] is an interactive co-
segmentation dataset, which contains 643 images with sin-
gle or multiple salient objects in a single image.

Compared methods: We compared our method against
10 state-of-the-art deep learning based saliency detection
methods: TIP [33], RFCN [47], DISC [11], DeepMC [55],
LEGS [46], MDF [29], RACDN [27], ELD [28], SPCNN
[19] and DC [30], and five traditional saliency detection
methods: DRFI [24], RBD [56], DSR [32], MC [23], and
HS [50], which were proven in [8] as the state-of-the-art be-
fore the era of deep learning. We have three alternate ways
to obtain results of these methods. Firstly, we run the orig-
inal codes provided by the authors if available. Secondly,
we use the saliency maps provided in the paper. Thirdly, for
those methods without code or saliency maps, we use the
performance as listed in other papers.

Evaluation metric: For evaluation, we use three evalu-
ation metrics, including mean absolute error (MAE), max-
imum F-measure, mean F-measure, as well as PR curve.
MAE can provide a better estimate of the dissimilarity be-
tween the saliency map and the ground truth. It is the av-
erage per-pixel difference between ground truth and binary
saliency map, normalized to [0, 1], which is defined as:

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−GT (x, y)|, (2)

where W and H are the width and height of the respective
saliency map S, GT is the ground truth saliency map.

The F-measure (Fβ) is defined as the weighted harmonic
mean of precision and recall:

Fβ = (1 + β2)
Precision×Recall
β2Precision+Recall

, (3)

where β2 = 0.3. Precision corresponds to the percentage
of salient pixels being correctly detected, while recall cor-
responds to the fraction of detected salient pixels in relation

to the ground truth number of salient pixels. The Precision-
Recall (PR) curves are obtained by binarizing the saliency
map in the range of [0 255]. For a given dataset, we have
mean Precision and mean Recall for this dataset which are
both 256 dimensional vectors.

4.2. Comparison with State-of-the-art Methods

We compared our method with other 10 deep network
based methods and 5 traditional methods, and the results
are shown in Table 1. First conclusion we draw from Ta-
ble 1 is that, deep learning based saliency detection meth-
ods achieve better performance on almost all the datasets,
except for DRFI [24], which achieve better maximum F-
measure on SED1 dataset than MDF [29], DeepMC [55]
and RFCN [47]. Second conclusion is that by training
image segmentation and saliency detection at the same
time, TIP [33] achieve almost the second best performance,
which indicates that the segmentation task can improve
saliency detection task to some extent. The last but the most
important conclusion is that our model “OURS” achieves
the best performance on almost all the 11 datasets.

In Fig. 4, we show the Precision-Recall (PR) curve on
four datasets (we did not compare PR curve on all the
datasets because some saliency detection methods do not
have saliency maps on all the 11 datasets). Our approach
consistently outperforms other methods on all the datasets.
For all the four datasets, our recalls are limited in a nar-
row range [0.7,1]. A higher and narrower range of recall
means that our saliency maps achieve consistent good re-
sults under different thresholds in the range of [0,255]. For
the other methods, recalls distribute in a wide range [0,1],
which shows that the corresponding saliency maps are more
likely to be gray images than ours. To further prove that our
saliency maps are more likely to be binary, we compute the
F-measure curve on the SOD dataset in Fig. 5. Fig. 5 shows
that, given threshold in the range of [0,255], our F-measure
is almost the same and it’s getting better with higher thresh-
old, which proves the robustness of our method. In Fig. 6,
we compare the resultant saliency maps of different meth-
ods on a challenging image, which clearly demonstrates the
robustness and the binary attribute of our saliency map.

4.3. Comparison of Different Models, Depths and
Spatial Refinement

In this section, we analyze the influence of network
model and network depth in our saliency detection method,
as well as how the spatial refinement helps our final results.
Specifically, we fine-tuned two variants of deep network,
namely, a 50 layers Deep Residual Network (“Res50”), and
the deep VGG net [45] (“VGG”). We compared these vari-
ants with the one we used, “Res101” and the results are
reported in Table 2. The three numbers inside each cell
are the maximum F-measure, the mean F-measure and the



Table 1. Performance comparisons with the state-of-the-art methods on 11 benchmarking datasets. Each cell: max F-measure (higher
better) / mean F-measure (higher better) / MAE (lower better). Red, blue, green: the best, the second best, and the third best.

MSRA ASD ECSSD DUT SED1 SED2 PASCALS ICOSEG HKU-IS THUR SOD
0.9248 0.9369 0.8756 0.7747 0.9213 0.8395 0.8070 0.8628 0.8634 0.7336 0.7808

OURS 0.9136 0.9257 0.8621 0.7631 0.9104 0.8254 0.7953 0.8493 0.8476 0.7222 0.7549
0.0435 0.0304 0.0765 0.0652 0.0558 0.1059 0.1054 0.0672 0.0655 0.0796 0.1296
0.8994 0.9380 0.8095 0.7449 - 0.8632 0.8182 - - 0.7276 0.7807

TIP [33] 0.8630 0.8932 0.7589 0.6045 - 0.7778 0.7310 - - 0.6254 0.6978
0.0628 0.0273 0.1601 0.0758 - 0.1074 0.1695 - - 0.0854 0.1503

- - 0.8570 0.7379 0.8923 0.8364 0.8029 0.8432 0.8917 0.7538 0.7728
RFCN [47] - - 0.8340 0.6918 0.8467 0.7616 0.7468 0.8028 0.8277 0.7062 0.7426

- - 0.0973 0.0945 0.1020 0.1140 0.1176 0.0948 0.0798 0.1003 0.1394
0.9042 - 0.8085 0.6616 0.8857 0.7816 - 0.7999 0.7859 - -

DISC [11] 0.8634 - 0.7779 0.6091 0.8667 0.7452 - 0.7609 0.7368 - -
0.0544 - 0.1122 0.1182 0.0772 0.1203 - 0.1147 0.1023 - -
0.9246 0.9301 0.7756 0.7012 0.8962 0.8141 0.7677 0.7983 0.7966 0.6858 0.7179

DeepMC [55] 0.8963 0.9067 0.7369 0.6209 0.8674 0.7766 0.7177 0.7654 0.7610 0.6189 0.6880
0.0426 0.0281 0.1623 0.0777 0.0810 0.1223 0.1888 0.1031 0.0919 0.0924 0.1552

- - 0.8303 0.6677 0.8897 0.8031 0.7618 0.7571 0.7662 0.6638 0.7347
LEGS [46] - - 0.7855 0.6265 0.8453 0.7357 0.7176 0.7093 0.7188 0.6301 0.6870

- - 0.1187 0.1318 0.0997 0.1251 0.1539 0.1269 0.1186 0.1242 0.1729
- - 0.8307 0.6944 0.8916 0.8432 0.7681 0.8376 - 0.6847 0.7381

MDF [29] - - 0.8097 0.6768 0.7888 0.7658 0.7389 0.7847 - 0.6670 0.6377
- - 0.1081 0.0916 0.1198 0.1171 0.1420 0.1008 - 0.1029 0.1669
- 0.9019 0.6753 - - - - - - - 0.6222

SPCNN [19] - 0.7979 0.5546 - - - - - - - 0.5159
- 0.0903 0.2152 - - - - - - - 0.2176

0.9045 - 0.8696 - - 0.8341 - - 0.8564 0.7160 -
RACDN [27] 0.8997 - 0.8555 - - 0.8165 - - 0.8516 0.7096 -

0.0514 - 0.0813 - - 0.1068 - - 0.0636 0.0866 -
- 0.9310 0.8674 0.7195 - - 0.7775 - - 0.7312 -

ELD [28] - 0.8954 0.8372 0.6651 - - 0.7538 - - 0.6805 -
- 0.0349 0.0805 0.0909 - - 0.1206 - - 0.0952 -
- - 0.8879 0.7391 0.9045 0.8567 0.8050 0.8727 0.8853 0.7441 0.8219

DC [30] - - 0.8315 0.6902 0.8564 0.7840 0.7528 0.8291 0.8205 0.6940 0.7603
- - 0.0906 0.0971 0.0886 0.1014 0.1246 0.0740 0.0730 0.0959 0.1208
- - 0.7834 0.6638 0.8731 0.8265 0.6939 0.8108 0.7771 0.6823 0.6657

DRFI [24] - - 0.6440 0.5525 0.7397 0.7252 0.5596 0.6986 0.6397 0.5440 0.5613
- - 0.1719 0.1496 0.1454 0.1373 0.2071 0.1397 0.1445 0.2046 0.1471

0.8530 0.9108 0.7164 0.6261 0.8433 0.8264 0.6611 0.7942 0.7219 0.5950 0.6383
RBD [56] 0.7609 0.8361 0.6195 0.5486 0.7509 0.7330 0.5745 0.7071 0.6236 0.5248 0.5418

0.1103 0.0688 0.1739 0.1467 0.1407 0.1316 0.1985 0.1310 0.1432 0.1507 0.2069
0.8371 0.8837 0.7345 0.6261 0.8299 0.7852 0.6494 0.7658 0.7414 0.6125 0.6440

DSR [32] 0.7357 0.8186 0.6387 0.5583 0.7277 0.7053 0.5610 0.7002 0.6438 0.5498 0.5500
0.1230 0.0834 0.1742 0.1374 0.1614 0.1457 0.2041 0.1491 0.1404 0.1408 0.2133
0.8489 0.9116 0.7416 0.6273 0.8502 0.7699 0.6675 0.7857 0.7234 0.6096 0.6493

MC [23] 0.7257 0.8206 0.6114 0.5289 0.7319 0.6619 0.5510 0.6790 0.5900 0.5149 0.5332
0.1457 0.0930 0.2037 0.1863 0.1620 0.1848 0.2296 0.1729 0.1840 0.1838 0.2435

Table 2. Performance comparison between different models and network depths. Each cell: max F-measure (higher better) / mean F-
measure (higher better) / MAE (lower better). Red, blue, green: the best, the second best, and the third best.

MSRA ASD ECSSD DUT SED1 SED2 PASCALS ICOSEG HKU-IS THUR SOD
0.9248 0.9369 0.8756 0.7747 0.9213 0.8395 0.8070 0.8628 0.8634 0.7336 0.7808

OURS 0.9136 0.9257 0.8621 0.7631 0.9104 0.8254 0.7953 0.8493 0.8476 0.7222 0.7549
0.0435 0.0304 0.0765 0.0652 0.0558 0.1059 0.1054 0.0672 0.0655 0.0796 0.1296
0.9245 0.9208 0.8925 0.7670 0.9183 0.8382 0.8304 0.8215 0.8769 0.7478 0.8027

Res101 0.8702 0.8673 0.8387 0.7005 0.8741 0.7748 0.7732 0.7635 0.8118 0.6852 0.7469
0.0541 0.0486 0.0797 0.0830 0.0678 0.0997 0.1095 0.0915 0.0689 0.0920 0.1282
0.8797 0.8835 0.8218 0.6778 0.8539 0.7549 0.7488 0.7735 0.8067 0.6775 0.7062

Res50 0.8164 0.8203 0.7471 0.5883 0.7603 0.6133 0.6676 0.7074 0.7249 0.6071 0.5921
0.0852 0.0728 0.1269 0.1069 0.1316 0.1469 0.1537 0.1206 0.1023 0.1150 0.1779
0.9069 0.9075 0.8646 0.7162 0.9038 0.8254 0.7872 0.7895 0.8473 0.7149 0.7704

VGG 0.8535 0.8510 0.8159 0.6651 0.8639 0.7717 0.7414 0.7335 0.7845 0.6561 0.7248
0.0608 0.0538 0.0894 0.0894 0.0728 0.1032 0.1233 0.1030 0.0779 0.1012 0.1369



Figure 4. Comparison of Precision-Recall curves on four datasets. Our fully convolutional neural networks based multi-level fusion based
approach consistently outperforms other methods on all the testing datasets.

Figure 5. F-measure on the SOD dataset. It proves that our
saliency maps are more likely to be binary.

Figure 6. Saliency maps of different methods. The first row: orig-
inal image, ground truth, DeepMC [55], LEGS [46]. The second
row: MDF [29], SPCNN [19], TIP [33] and our saliency map.

MAE from top to bottom.
As demonstrated in Table 2, our final results (“OURS”)

with multi-scale fusion refinement achieve the best perfor-
mance across all the 11 datasets, with almost 3% perfor-
mance gain in mean F-measure and 1.5% performance im-
provement in MAE compared with “Res101”, which is the
direct coarse saliency prediction map. “Res101” achieves
the second best performance, and VGG the third, Res50 the

worst one. These results clearly illustrate the importance
of deeper network and the contribution of our multi-level
fusion in improving the saliency detection performance.

5. Conclusion

In this paper, building upon the success of deep neu-
ral networks, we propose a fully convolutional neural net-
work based approach to salient object detection, which is
empowered with multi-level fusion. We integrate saliency
cues at different levels through fully convolutional neural
networks and multi-level fusion, our approach could effec-
tively exploit both learned semantic cues and higher-order
region statistics for edge-accurate salient object detection.
The retrained 101-layer Deep Residual Network with di-
lation/atrous convolution can predict much denser saliency
maps. Spatial refinement process can assign consistent
saliency values to regions with similar higher-order cues
while keeping the strong foreground and strong background
regions intact. Extensive experimental results on 11 bench-
marking datasets prove that our model achieves the most ac-
curate result with nearly binary saliency maps. Also, differ-
ent from most of the existing deep learning based saliency
detection approaches that often require more than 10,000
training images from more than one saliency datasets, our
approach only uses 6,000 images from the MSRA10K
dataset for training, and applies the same trained model for
saliency prediction on other datasets, which further demon-
strates the generalization ability of our approach.
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